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BSTRACT 

A general system for the detection of amplitude-modulated 

noi::u, in the presence of background noise, is analyzed with a 

view toward determining the behavior arid optimum design of the 

system. The unmodulated noise 'i^rier and the background noise 

are assumed to te independeat stationary Gaussian random time 

functions. The modulating functio: is a time function which, 

in genar^l, is random, non-Gaussian, and nonstationary. A 

detection criterion, as a measui'.- -.j. the performance of the sys- 

tem, ir defined, and computed in terms of the input power spectra 

and the transfer characteristics of the system. The techniques 

used, and the intermediate mathematical results obtained, ar*? of 

interest in themselves. The results are applied to give a 

detailed analysis of a typical Sstcetion system which is a 

special case of the general sy t_jic 

-.. 
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UJe assume both the noise and the signal to have zero mean level; 

that is*. 

where 

?n:=(y2('t)y =J   Gy (to) du> (1 = 4) 

p =<g2ct))TAV = r\ <«> du g      \ 6   •   V TAv ~ J    ~g 
0 

h 

1.  INTRODUCTION 

The problem of the detection of signals having the character 

of amplitude modulated random noise is of recent interest in 

communications theory. For example , a paper by Deutsch treats 

the effect of a linear detector on such signals when the modula- 

tion is periodic. 
In this report, we treat a general detection system involv- 

ing square-law detectors. We shall compute various statistics of 

the output, with and without modulation, and, from these, compute 
a detection criterion which we define as a measure of the detecta- 

f, 

bility of the modulated noise. 
The system is diagramed in Fig. 1. The input filters H-, and 

H- include the characteristics of any receiving equipment which 

might ordinarily precede them. The only assumptions made on the 

filters K-, and Kp are that they do not pass dc. The output inte- 

grator is perfect with integration time T. 

We take the input u(t) to be a stationary Gaussian noise y(t) 

modulated with index m by a signal function g(t), statistically 

independent of y(t). Thus 

u(t) =y(t) [l + mg(t)J . (1.1) 

i 
<y(t)>xO, <g(t)>TAvsQ. (1.2) 

Then, the total input power, P , is 

Pu=<u
2(t)>TAv=Pn (l+m2Pg) (1.3)      I 

* This notation is defined in the Appendix in which we summarize 

the main notations and notions on rancom time functions that we 

use. 



p 
Thus m P Is the ratio of the sideband power to the carrier power. 

O 

We shall assume 

Y-^rk   ^v i f-\    t?\ m * » v.>. A^ 11.,/ 

since this is the interesting case in a detection problem. The 

methods used} however, are applicable for any value of the ratio.- 

If by detection is meant the extraction of information about 

the modulating function (which would also seem to be the best 

means for distinguishing this type of signal from unmodulated 

noise), then, the inherent presence of fluctuation noise at the       \ 
output of the detector, due to demodulation of the input noise 

carrier, makes this a problem of the detection of signals in the 

presence of additive noise. 
In order to see this more clearly, and to better understand 

j 
the action of the general system of Fig. 1, we shall compute the 

output power spectrum of a square-law detector *»hen the input is 
unmodulated noise. This calculation also gives a simple illustra- 

tion of the methods used in treating the general system. 
; 

! 
I 

i 
i 

II 
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2.  POWER SPECTRUM AFTER A SQUARE-LAW DETECTOR 

If the input of a square-law detector is given by (1.1), 
then, the output i*(t) of the squarer is given by 

v(t) = u2(t) - y2(t) [l+2mg(t) + m2g2(t)] . (2.1) 

In order to compute the power spectrum G (co ) of v(t), we 
first compute the autocorrelation R ("P ). and then obtain f» (to ) 
by means of the Wiener-Khintchine theorem (Eq. (A5) in the Appendix). 

V* > = (T<*> T<* +-"1 > ) TAv 
<2-2) 

r/. 
TAv 

TAv 

= (y2(t) y2(t+t )) [i+m2 i(g2(t)N; 

+ (g2(t + * )> TAv + 4 <g(t) g(-b^)> TAv] 

4- m4 (g2(t) g2(t^TJ)>>TAv }  . 

The terms in (2.2) which involve m and m^ vanish, since we 
assume that all time-ensemble averages of odd powers of g(t) vanish. 

To compute the foregoing fourth order ensemble average of y(t)., 
we use the formula (A7) given in the Appendix, which expresses the 
higher order moments of a Gaussian random time function in terms of 
its autocorrelation function Ry(f). 
We have 

(y2(t) y2(t+t))=(y2(t)) (y2(t +X ))-i-2 (^y(t) y(t+-tf)>] (2.3) 

= R 2(o) + 2 R2(t). y      / 

I . 

As regards the fourth order time-ensemble average of g(t), we 
make the assumption (which is fulfilled by a large numDer of random 
time functions) that 

• _2/i.\ _2/j_ L _, \ \     . o 2 (g^t) g*(t+«t)) TAv=Rg" (0)+f(T) 

p 
where f(t ) is of the order no greater than that of R  (0). 

D 

(2.4) 

1 

- • -.. —,_... ..._„, ;... 1    -;••-. 
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For example, if g(t) has Gaussian statistics, then 

f(r ) = 2 Rg
2 (r) £ ? Rg

2 (o). 

Consequently, we obtain from  (2.2) that 

Rv(* ) =r {p.y
2   (0) + 2By

2   (T? )} {[i+ m2 Rg   (0) J 

+ 4 m2 R„ C"J ) -f m4 f(r )} 

(2.5) 

(2.6) 

! 

In view of assumption (1.5), and the foregoing remarks about- 

f(f ), we may henceforth ignore the term in (2.6) involving m . 

The power spectrum G (to) is now easily obtained by taking 

the Fourier integral of (2.6). The resulting terms group themselves 

naturally into three groups; by (1.4), we write P and Pa  for Rv(0) LA o jr 

and R„(0) respectively, 

(2.7) The power spectrum G (to) is the sum of dc terms: 

2 2(«) Pn
2  [l + m2 Pg]  

2 

2  2 steady state or signal terms? 4m P  G (« ) , 
"  g 

noise or fluctuation terms*  [l+m P J  j dp.  G (JJ, ) G (c*)-^ ) 

|2B
2
 J d-y G (v ) j du. G (^ ) G (/J.+ w-V ). 

i 

The integrated power is then, dropping terms involving m P by 

assumption (1.5)> 

dc 

signal 

noise 

n (2.3) 

o  2 4 m P „ P n  g 

2 P 2 . n 

._ ---„,,.,  ... '..      '    _ 

.*'• 

_- - - •! 

•- "•" --••- — f •*! 
•' 
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Thus, as stated at the end of Sec. 1, at the output of the 

square-law detector the problem reduces to that of detecting a 
2 

signal of total power 4m P P in the presence of an additive 

noise of total ±,cwer 2.  P 2, 

This problem is usually attacked by analyzing the detector 

output with a band-pass or low-pass filter followed by squaring 

and averaging to determine the mean square signal and noise. 

It is easily seen that the complete detection system, 

diagramed in Fig. 2, consisting of receiver, square-law detector, 

filter, squarer, and finite time integrator is a special case of 

the system of Pig. 1, obtained by setting H » H-j_ • H2 and K =• K-^ =» Kg. 

This case is treated in detail in Sec. 8. 

•.-. 

TBTi.-ftrrti.li 
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3.  THE DETECTION CRITERION 

Suppose that it Is possible to measure the output w(T) of 

the system of Fig. 1 when the input is unmodulated noise. A large 

number of such measurements will have an average and a mean square 

fluctuation given by the ensemble average \w(T)/  and the variance 

A     /-. .\  2 
<T2 ~(i2i*T)/ n   x    f (*<T)) \ (3.1) 

Similarly, a large number of measurements of the output when 

the input Is amplitude modulated noise will! have mean value {wd^ 

and variance 
2_/-2- A       / \ 2 

mn 

0" mn '"2<T)) mn " <*<T>) mn (3-2) 

The subscript n on a quantity is to indicate that the quantity 

is to be evaluated under the assumption that the input to the system 

is unmodulated noise, while the subscript mn will be used to indi- 

cate that the quantity is to be evaulated under the assumption that 

the Input is amplitude modulated noise. 

Under the assumption that the observations are independent, 

the difference A(T) of the observed outputs in the two cases, 

A(T) = w(T) mn w(T) n » (3.3) 

will have mean value \6.C±j}   = '("('r)^mn " ^ w(T)) n  and 

urn XI 
Usiii0 the statistical theory of test- 

ing hypotheses, if the probability distribution of A(T) is krown, 

by testing the hypothesis that {A(T)/ = 0 one can detect the 

presence or the absence of signal. To any preassigned probability p 

one can find a number, K, such that 

[*-a+'.a] 
1/2 

(3.4) !A(T)S * K |crmn'+j-r 

with probability p.  As the detection process, one then adopts the 

..3»a»*«» ..•-*. -  ...... --^. iwjgr.- mm^vat-^ 

--  - :* 
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*m - ^-i—T^T (3-5) 

It is presumed that the larger D(T) is for a given detection sys- 

tem, the better will be the system's performance, and the more 

likely it will be to detect the presence of signal. 

In many cases? it can be assumed that the fluctuation term 

for the case of signal and noise in the input is roughly equal to 

the fluctuation term <r for the case of noise alone in the input. 

We then have for the detection criterion 

3HT) = i --^_^L^2L. (3#6) 

In view of assumption (1„5)> one could show that (J"mn is 

roughly equal to <rri, and we therefore use Eq. (3.6) for the 

detection criterion. 

We now turn our attention to the problem of expressing D(T) in 

terms of the statistics of the noise and of the modulating function. 

This problem is solved in several stages, as follows. 

In See. 4, «e express D(T) for large T in terms of the cross- 

correlation, P (X), of the outputs, v-^(t) and Vp(fc), after the 

second filters, and the autocorrelation, R^t), of the output, w(t), 

of the multiplier* We also obtain a similar, but more complicated, 

expression for D(T) for small T. 

• or 

f 
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following rule. One decides that noise alone is present if the 

difference of the obferved outputs lies in the range given by 

Eq. (3*4), and that signal (in our case, modulated noise) is 

present if the difference of the observed outputs lies outside 

the range given Dy Eq» (3-4). 

Motivated by the foregoing considerations, we therefore 

adopt as our detection criterion, denoted by D(T), the following 

patioi 

1 

" '"" ' - • •--  -•   .- .... -   -._,._, . ._'_._^Jt^.J_^_.;_^££iJ 
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In Sec. 5> the cross-correlation, D  (*£), is computed under 
two different assumptions.  First, it is computed under the 
assumption that the input of the system is unmodulated stationary 
Gaussian noise, in which case v.'e denote it "by ,0 ("£).  Since ' in 
the stationary character of Gaussian noise is preserved after 
passage through non-linear devices, it holds that 

(0n(*) = [<vx(t) v2(t + t))IAvl n (3 = 7) 

zz^j^t)  v2(t + "*)}>n 

Second, £("£) is computed under the assumption that the input, 
u(t)s is amplitude-modulated noise.  In this case, we denote it 

Thus, 

fan'* >=[<V*> v2(t+x)>TAv] mn . (3.8) 

In Sec. 6, the autocorrelation, R (TJ), is computed under 
the assumption that the input is noise. We have therefore 

V* } - [<"(t) W(t + X >>TAv j n ^.9) 

-^w(t) w(t + X  ) V 

Finally, in Sec, 7? the results of the preceding sections are 
combined to yield the required expression for D(T). 

'zr~'—f 

! . -' 
I 

--_ -^i .L^S^r^^^-.^ 3-V::>>^ -it ••  --.4:.^...: -.:,-:...:•.    „i" .ift^' • 'i^^K&rtoi '"*)'•• 
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4.  LIMITING FORMS FOP. THE DETECTION CRITERION 

A Formula for D2(T) 

Since 
P T P T _ 

id) s     K(t)at   =1    vx.(t) v2(t)dt, (4.D 

it follows that 

<i(T)> n=fT    < VX(t) Y2(t)>n    « =   T fn<0), (4.2) 
^o 

<i(T)) nn* f T    < ^l(t) ^2(t)>   mn dt j (4*3) 

J o 

-o    Jo 

fT   jT     dt dt'  R«(f-t)   =     2 j dri^CTf)   (T-*>. 
JO    Jo *o 

Therefore, 

2 PT 
(*2<T>)n    -   (^(T))^2   =     2^oOTjR,J(r)   (T-r) (4.5) 

o f T 

"    [Tpp   (0)j        =   2Jo       dr[»»CT)   -fn
2  (0)]    (T-t>. 

Corsequently we may write for D U'JS 

If to   .   {TJV
1
*^   "f°-(0)i (4.6) 

T I jT0-TM [Md-p^M]* 
u 

. • 
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The Limit for T Large 

If the noise, y(t)y has a continuous power spectrum G,.(trf), 

as we assume to be the case, then it will be shewn in Sec. 6 that 
the power spectrum G (c--1) of the output of the multiplier (when 

the input is noise) will also be continuous except for a dc delta- 

function term equal to 2 P     (0). \ie  therefore define 

G'WM =   ^U-lp^Co) S(u) (47) 

to denote the continuous power spectrum of the output w(t) of the 
 1 J-4 »s I A  g,y 

The autocorrelation, R1 ("£), corresponding to G' ( to)  is then 

given by 

R»^(nr) = V* } -fn
2 (°)- (4-8> 

R' (•£ ), unlike R^C^), has a finite integral from 0 to** .  By 

the Wiener-Khintchine theorem, it follows that 

o c 

Let us now pass to the limit, as T-> o=> , in (4.6).  By defini- 

tion, the first term of the numerator tends to p     (0).  From the 
• I mn 

fact that R1 (if ) is integrable it follows that the denominator 
tends to 7f G' (0). 

w 
We therefore oDtain thai" 

T^* T 7T £'     (0) 

2 

(4,10) 

«.T9*«'V>;»/- .•••i,',-.-?,mW'IMOI »>«iwiw • .iii',a«r--^g«wg^»'-iK-.j-^iMw>»«^»«j»«i»i .«-»*»<«>ted»a<Mt^'^'ea8fcjKsatg!Sy' 
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D m - IT (4.11) 

Thus for T large, we have approximately 

ft»tti-ft.w . 
UTTC^O)]"

2 

Thus the detection ratio increases with the square root of the 

integration time. In other words, in order to double the detecta- 

bility of a weak signs.l in the presence of noise, it is necessary 

to quadruple the integration time. 

The Limit for T Small 

For T small, the denominator of Eq. (4.6) is approximately 
T LB'W(

0) " P       ^°) j  •  However, there is no simple expression 
for the first term of the numerator, unless the signal is station- 

ary, when the integration is no longer necessary. We therefore 

can only obtain the formal expression 

MO)- e*l0) 
' 

In Sec. 5» we will show how the first terra in the numerator of Eq. 

(4.12) may be evaluated if we possess a knowledge of the complete 

statistics of g(t); that is, if we know the mean value function 

yU. (t) =  <g(t)> (4.13) 

_a 

and the covariance function 

rg(t1, t2)={g(i1) g(t2)} (4.14) 

It may be noted that the assumptions we have already made on g(t) may 

be written 

0 = Uu M \ 

TAv 

(4.15) 

(4.16) 

^t^l^imggjgffjjfiszzyimm* *.<**•*MHErVti£,.-:; :*:- ••-.'. v*t» wnn »,««. 

  :        r--'   '  " 
wse- 
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5.  CROSS-CORRELATION BEFORE THE MULTIPLIER 

Tn -t-Vi- :is section, we computed (TJ ) and ^ „(!?). We make ' in       » mn 
the convention that all integrals which are taken from -OP to 

ot*        are to "be written without the limits of integration. Since 

it follows that 

P 'V. = (5.3) 

fUM = J' <FJSCO]><F:[4.^3C^>T^   (5#4) 

r where for brevity we use the single primed integral sign \    to denote 

the six fold integration, 

[UHT MttMl) f[[J<U<M|S *^IU)JLIW Jia(A)i1ft)(5.5) 

and for a function f(t), we define the notation F, ff(t)j by 

In Eq. (5«4), we have used the formula 

J •*     TnV       ** iinr 

which follows from the statistical independence of y(t) and g(t). and 

the stationary nature of y(t). 

1 

M,»K^S»MI i -ifus nmmnmmi.--'zsxxc-'*^---' a  iqammw iimwa «.»1 —|JMEaP—SEaB 
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We henceforth drop the subscript y in writing the autocorrela- 

tion and power spectruia of y(t). Since y(t) is Gaussian, we may 

express the four fold ensemble average ^F1 [ y(t)J/in terms of 

the autocorrelation h(X ) of y(t) by means of Eq. (A7) given in 

the Appendix. We thus obtain 

<F;[.,W]> =   RU,-«0 FUp.-fO (5.8) 
+ R(t-t-<•<,+>-p.-V) Rlx+^^-Pi-ii 

F,   f~ l-f- mg(t) J is easily expanded in powers of m,  and we 

obtain 

r 

•f qU-<A-^, gtt-^)    3 «**-£-1) 

+ 3 U- ^x-t) 3 (*+*- (Wi    9 ^+,e" ^"^ J 

tj A ,1 V 

3 

— • •• .•--.  •• ., .. — -i,-*.,   ' , V   •-•  ,  
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Upon taking the time-ensemble average, we obtain 

i 

The terms in m and m-' vanish, because it has been assumed that 

all time-ensemble averages of odd powers or g(t) vanish. In what 

follows, we may also ignore the term in Eq. (5-10) involving m , 

since we assume that the fourth order time-ensemble average of g(t) 
o 

is of the order of R (0). Consequently, the term in Eq. (5*8) 
involving m is of the order of \ mHR (0) ! , and this term may be 

t-  g J 
dropped in view of the discussion in Sec. 1. 

In view of Eqs* (5-10), (5.8), (5°4), and (5»3)» we could now 

write an expression for Pn(^) 
a^ for Pj^'O in terms of the 

modulating index, m, the autocorrelation functions, R('K) and 

R (T), and the filter impulse functions, h^dL ), h2(^), ^(^ ), 

k2(Y|).  However, it is more convenient to express the cross- 

correlation, D {"¥ ), in terms of the power spectra, G(Q>) and 
G (&)), and the filter transfer functions, H^w), HgC^), 1^(6! ), 

and K2(<«>).  To do this, Eqs. (5»10) a*id (5»8) are substituted 
in Eqs. (5.4) and (5*3) •  In the resulting expression, R('fc) and 

R (TJ ) are replaced by the Fourier integrals which relate them to 
6 

G(i*>) and G (*J ), given by Eq. (A6) of the Appendix. By inter- 

changing these Fourier integrals with the integrals indicated in 

Eq. (5.5)? and performing the latter integrations, we obtain the 

following expressions for ^nCO and /%n(
T')* where an asterisk,*, 

denotes a complex conjugate. In deriving these formulas, we have 

! 

J 

i 



raBJSS»IIS?tW««W^r-rw«r»»>!»^7rT - . i '   •,r""'Miw 

- 18 - 

made use of the facts that a spectral density is an even function 

of its argument; while any filter transfer function, say H, is 

Hermitian; that is, H(-6> ) = H * (u>). 

+ 2  ffjki* eit(wi"^ Gto«<«0 •H.f'O Hi*^ 

(5.11) 

(5-12) 

•+• 

+• 

+ a SIfe K e"1"^ C(0 GfrO HiW HJW 

f do. GM K.* (US HiU")   ^ 6^ H*^ Hz(«,.-v) 

H, («,+»") l**W H,6v-v) H/6*) K>.*0 K/(H+0 

+ tf   UvG»W  ft<k<Jk   fifcflfiW e1*^**^ 

Li   /•«  i_» \   Ll*L*      >     Li   -'--•  v   " */ = .». \   1/   /• • J=< •>  *-A    1^.    /i.i.Aii3L+Vl 

•"e^i—.^....^WrJ .   . . ... .        ... 
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The reader should observe that all the foregoing integrals 

are real valued quantities. 
Later, we will assume that K-, (0) =s 0= K2(0). Therefore, we 

have written the foregoing expressions for C n( ^ ) and Pmn' ^) 

in such a way as to make evident the form they assume in this 

case. 
To conclude this section, we indicate how, with a knowledge 

of the mean value function Eq. (4.13) and the covarianee function 

Eq. (4.14) of g(t)v one is able to evaluate the quantity 

o 
(5.13) 

Tny\ 

required in Eq. (4.12).  Using the methods of this section, it is 

evident that Eq. (5*13) is equal to 
pi ~~p 

Using the expansion of Fx [ l-i-mg(t)^] given by Eq. (5.9)» it is 
easily seen that, up to terms in m , 

(5.15) 

— .- - - ,       .. - 
OMM'WI 
- - : - . W  I 
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It is clear that if g(t) is a zero mean stationary random 
time function, then the right hand side of Eq. (5»15) is equal 

to the right hand side of Eq. (5*10). 
Using Eq. (5.15) and Eq. (5*8), one could write an express- 

ion for Eq. (5-14-) similar to that written for Eq. (5»4) in 
Eq. (5.12). However, for the present, we leave this computation 

as it is. 
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6.  AUTOCORRELATION AFTER THE MULTIPLIER 

In this section, -we compute 

IL,It)- O,c*)*«*) v?(*tt) vt(-^x)X (6#1) 

the autocorrelation of the output of the multiplier vihen the input 
is unmodulated stationary Gaussian noise* Using the same approach 
as in the previous section, vie write 

Rur(t)= f <F*t 3W3>. (6.2) 

• • 

where for brevity we use the double-primed integral sign I to denote 
the twelve fold integration 

JIJT A *\ *»•** A.fo)*,IW \h.W^        (6.3) 
«•> /* ^ ^ f\ a* »* 

Jjjj <U <k <k3 <Ui -tiU) *.W *iU) -M«^x) 

and we define the notation F0  C^*) 1 to ^e&n- 

•jC-t-^.-^ ^(*-^\) ^(tn-v^ «i("t^-^->)(«.4) 

New \F2 Ly(t) ]^is an eight fold average of a Gaussian random 
function. Consequently, by Eq. (A7) of the Appendix, it may be 
expressed as the sum of 105 terms, each term a product of four 

.. : -.; ;. V—< — •*« '» »N)   _• <•••!•   -• " 
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two fold averages.  It is easy, although tedious, to enumerate 

these terms.  It is found that, if we assume that 

K,(0)= 0 = K0(O;, (6.5) 

then 45 of these terms vanish when the integrations indicated "by 

Eq. (6,3) are performed.  By the same method as used in the pre- 

vious section, the remaining 60 terms can be expressed in terms 

of the power spectra G(<^> ) and G (to), and the filter transfer 

functions H-, (co ), H2(ca), K-^u)), and K2(to). We finally obtain 

the following expression for B^C^). 

\u  1? M =- 

rr ! \ />/ N 

^ Hil^M^^ 4M<tottO£to e*6**"'"'^ 

. . Pfff *\^/\/./\'/-l\   Z)trCw,+u)i+^+^ 
-j-*-^ jjjj   ^tM'i o^a. "ww*  *  *•     ^ x  "   ,3,fe">   ~5~3'   -•   «! 

H,W CM H.W H3«*0 H.*WM^  ^^ ^ 

K»(*VnO    K»(«^«^    K»**6*-^   ^(^-^a) 

+id riii JU M 1- ^ < w G^ *w^£tr^?' 
H.U) HM H,*M HaU H.W H^W HiU) H* M 
KiU+t^ K*fo»*««) K»*ta-«»i)  K2 (u*-^ 

Kikt«»1   M^***) K/forHAi)   Kx*Nx+^ 

! 

-0 

j*%*•«?«•,•«» *j*>-.*.«_ w.v.?»> in** • iNbvVMI 

_ -—   • •    •-.  
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7.     COMPUTATION  OF THE DETECTION CRITERION 

In view  of Eq.   (4.11),  the detection criterion D(T)  is 
known for T large as soon as me know 

\ mil \ n 

2TK   G'^CO) (7.2) 

i 
These quantities may nos be expressed in terms of the charac- 

teristics of the filters and the statistics of the input noise and 

modulating function. 
From Eqs. (5.11) and (5.12), and the assumption Eq. (6.5), it 

follows that 

P^W-frM = (7.3) 

Hid*} »*(»x^ Ki^r"^ fe*fa+*^ 

1 

i 

5 i:'" - • -'••-•r- \ —'•*•• • - -•#-..- pgf, L .... 
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It is immediately seen from Eq. (5»H) that, under the assump- 

tion Eq. (6<.5)) the first terra in the expression Eq. (6.6) for 
R (-C) is equal to Pn

2(0).  Therefore R' (t)  is given by the 
other terras of Eq. (6.6).  By integrating these terms with 

respect to t ***        +• r\      /£} ?e obtain the following express- 

ZvG«(6) = HIT (7.4) 

U Si» W" //ifol* f^MGMlHMW^i3- 

+\ f«f*/*fto *aW}* /7*» «/«0 6Awd AW&*&) 

X. 

IU» KMKSM 4<W) W^A) H**(*»A)I 

4- Xd> /66offc M*w few/1 

(ia-h/Dj 

+   i1^  C60 &£)   //<** ^ Gfa) 6fri^) Gk)£<v>> ^ 

r<j fa+flfe ^)    Ufa,* fo * •*. +>) J 

MBWMMW—•**#!•*** iiM»wni»w-. -: 
. -    .     j.. 

• 
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From the above results, we may immediately obtain the 

detection criterion D(T) for the system of Fig. 2 by setting 

H,<« ) - H2C* ) *H(oO  and V*> ) = VW ) ' U^ )' D(T /" 
J- tf   . ---5     4      -   >,„ ^?T     fA i^     but  no• the terms  on the T large is stxix given by Eq.   v^xx,,   ou- --<-»   - - 

rlcht v,ond  Side  of Ea.   (A.ll) may be expressed as followsi 
X   j.£«!V 

a 

+i*1 f«U &.£»)  If A* «k» fiW SW #7*) M-"* 

+•£»» f<u 6j/») iU« A. 6/UK/W ///to)/2 



••~-'"**~ 

- 26 

8.  APPLICATION TO THE CASE OF GAUSSIAN FILTERS 

To illustrate these results , let us compute D(T) for the 
system of Fig. 2. For mathematical convenience, let us assume 

that, up to phase factors, th3 filter transfer- functions K(iJ ) 

and K(D ) are given by Gaussian functions, as follows: 

r i /«—a«\*i r i / jj iJbY 1 
(8.1) 

i 

(6.2) 

While not physically realizable, Gaussian snapped filters are 

often good approximations, for mathematical purposes, of actual 

filters. Under this assumption, the evaluation of the integrals 

in Eqs. (7.5) and (7.6) is much simpler than it would be otherwise, 
for we may use the following useful formula for the product of two 

Gaussian factors: 

J!/*f (8.3) 

where 

H = iLsLtJk-sl 
^1 

<T      =: 
07*51 

07     ••• o 4 

(8.4) 

5 :         
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It is easy to verify Eq. (8.3) by expanding both sides * Fxom 

Eq. (8.3) it follows that 

For the signal po\.er spectrum Go(«i>), we will assume a 

Gaussian function centered at roughly the same point as is K(u>). 

4 **f r 1 l~^-~ j J J 

There is no difficulty, however, in treating any other form of sig-    i 

nal spectrum. 

The noise power spectrum G(0 'j  is assumed to be flat and iden- 

tically equal to a constant G. 

We assume that ail crOss-produ^t terms may be ignored when 

these Gaussian functions are multiplied. We then have by Eq. (8.3) 

that 

r *   n 

w 
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We also sssume that 

rwX   -: i   j^F-Zikn a-i. (8.8) 

There is now no difficulty in evaluating Eqs. (7«5) and (7.6). 

We obtain the following approximate expressions: 

PmnKO- PT,
U)
 = (8.9) 

-  ,    fr. /£ _^l-Vz   3 or 1 

2ir G'ur(O) = 

2^1,-ZY tfr*  r. {i+(lJz^^J        (8ao) 
,-r-  1 

»t H 

r.'',. 

As a measure of the ratio of the bandwidth of the spectrum of 

the modulating function to the bandwidth of the power transfer 

ronctions lH(cJ ) | 2 and |K(<J )| 2 of the filters H and K, define, 

respectively, 8 

K= %'a >      R*:= «?" ^ • (8ai)    * 

is 
IS 

..    '- •-: —v -• 
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Then,  "by means  of Eq.   (4.11), we have approximately, 

*» 

(u^r^iM 
KR + (<j/l+2)RH 

(8.12) 

•   -S3K5E«WW MMUMCJnM 

B^JP?*****--**..-.-.^:-^. ,. ...—.. 
.   • 
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9.  EXTENSION TO THE INCLUSION OF BACKGROUND NOISE 

It is of some interest to consider the problem of detecting 

the amplitude modulated noise in the presence of "background noise. 

We let z(t) denote a stationary Gaussian random time function, 

with autocorrelation R_(*^ ) and power spectrum G„(«i>).  We assume 

z(t) to be statistically independent of y(t) and g(t).  Let 

y.,(t)K y(t) + z(t). (9.1) 

Then y-i(t) is a stationary Gaussian random time function with 

autocorrelation 

R-! v t ; — Eyi.-x; ; -r Rz \ f; fa   o^ 

and power spectrum 

G1(co)=iGy(ui)4-G2(o>) (9.3) 

If the input of the system of Fig* 1 is y1(t)J then the cross- 

correlation of the outputs before the multiplier (denoted by /L..L(1? )) 

and the autocorrelation of the output after the multiplier, continue 

to be given by Eqs. (5.11) and (6.6), respectively, with the proviso 

that instead of G(t»>) we read G-,(W). 

Next, let us consider the case where the input to the system of 

Fig. 1 is 

u(t) = y(t) [l+m g(t)] + z(t), (9.4) 

and let us compute the cross-correlation of the outputs before the 

in l multiplier, which we denote by Pmn.A. v,( "^ ) •  In tne notation of 

(9.5) r mn b(U) ~  f <FX L'u(t)] ) TAv 

.-'•;• .=^- 

gs •••> *mm^fmm» 
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Using the methods of Sec. 5, It may be shown that 

V7» w 

2. 

Z 

+ i a* 6* (•*>»* top Jiv 6»w K V^ ,M*(^v)r
x7 

+ Z»l Jj-v 6fW e^' K.W CW Jan «»W H.*W M">*^ 
"•       —       • .       .- 

H,i^ Hz*(w^V)   KilV>*0 K/fe-^v) 

a 
B 
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The i-eaiuer  should  observe  that  the difference 

(9.7) 

is given, up to a constant, by the very last term of Eq. (9.6). 

under the assumption of Eq. (6.5)- Thus the average mean level 
out of the system due to the presence of the modulating function 

is increased by this term when background noise is present. 

However, the fluctuation term in the denominator of the detection 

criterion is greatly increased by the background noise. Conse- 

quently, as one naturally expects, the detectability (as given by 
the detectJor. criterion) decreases as the background noise in- 

CreuSes. 

. 

» 

S 

 ,. -„,._.... •» 
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10.  CONCLUSIONS 

In the foregoing, we have developed formulae which enable us 

to study the behavior, and the optimum design, of the detection 

system of Fig* 1. We have made three calculations which may be 

of general interest. We have (1) introduced, and uerived various 

limiting form? for the detection criterion; (2) computed the cro??- 

correlation of the outputs entering the multiplier for two kinds 

of input, stationary Gaussian noise and amplitude modulated noise; 

and (3) computed the autocorrelation of the output of the multiplier 

when the input is noise. From the correlation function, the corres- 

ponding power spectrum can be obtained by means of the Wiener- 

Khintchine relations- 

The mathematical techniques used here may be of use In many 

other contexts than the one we have explicitly considered.  In the 

calculation of (2) and (3)j » basic rule was played by Eq. (A7) of 

the Appendix, which gives an explicit expansion of the higher order 

statistics of a Gaussian random process in terms of its second 

order statistics. By using this expansion, we were able to avoid 

using the Fourier representation of a Gaussian random process used 
1 2 "* 

by many authors ? '  J. It appears to us that, as long as only 

linear and quadratic devices are considered, the use of the Fourier 

representation renders many computations unnecessarily cumbersome, 

and may not always readily yield the correct result in complicated 

situations in which delta functions are involved in the power 

spectra. It has often been observed that the correlation function 

is generally better behaved than the power spectrum and consequently 

the mathematical analysis may sometimes be simpler if one first- 

computes the correlation function, instead of the power spectra. 

The computation of the correlation function can in turn be facili- 

tated by use of formula (A7)« 
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APPENDIX:  THE MATHEMATICS OF NOISE 

In this appendix, we summarize the main notions in regard to 
random time functions- and define what is mathematically meant by 
noise > 

Let y(t) be a function of time t defined, for the sake of 
generality, for -«? ^ t < <* -  If y(t) contains, in addition to t, 
random parameters, so that at each point t, y(t) does not have a 
definite value but only an ensemble of possible values which it 
assumes in accordance with some given probability distribution, 
then y(t) is said to be a random time function. Then the ensemble 
average, denoted by \" / , is an average taken with respect to 
these random parameters. We let 

ii.it)   = <u(-trY> (Al) 

= fn. (M+TV) 
d ± ••*-* « ,1V 

I I 

J 

P. f-L O = <u(t,W(t^> (A2) 

denote the one- and two-point ensemble averages of y(t); n    (t) is 
called the mean-value function, and  P  (t,, t2) is called the 
covariance function of y(t). 

A random time function for which the ensemble average 
K  yCt) ~/\t-¥X  )^ has a value that is independent of t, and de- 
pends only on x  » is called stationary. 

The autocorrelation R (t ) of a random time function is de-       \i 

fined (for -*><X><~*    ) by 

•T 

(A3) 

» 

'-: 

s 
where the subscript TAv is used to denote a time average, defined 

as in Eq. A3* \ 

8 

I 
• ^••1 I    W 
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Clearly, for a stationary functio 

RyCr) = ry(t, t±x ) (A4) 

The power spectrum density function G (td ) is related to 

R (U) by means of a Fourier transformation (tfiener-Khintchine 

theorem;". 

V"1=* Ue (A5) 

2 r< 
C«K* "Eid  Ko M  <vc 

(A6) 

=   i. CCW ^» (a,/ iw) <A*> 

By noise is gtaerally meant a stationary random time function. 

y(t), whose distribution is Gaussian. The important mathematical 

property of such a random function is that its complete probability 
distribution, and ail possible moments, are fully determined once 

vie know the mean value function* £L   (t), and the autocorrelation 
function, R ("Z  ). The mean value function, jJL  (t), is often assumed 

* y 
to be identically zero- For such noise, all odd order moments 

vanish, and the even order moments may be expressed in terms of 

the second order moments by means of the following useful formula. 

Let n be an even integer, and let t-, j ,tM be points of time, 
some of which may coincide-, Then 

i > 

Li 

where the sum is taken over all possible w-ays of dividing the n points 

into n/2 combinations of 2 pairs* The number of terms in the summa- 

-_,.--_.:. •---_u.-.. _^'__'.   '     •" 

1 
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tion is equal to l*3",,(n-3) (n-1).  Thus, for nc 4 there are 
three terms in the sum, and for n — 8 there are 105 terras* 

It is interesting to observe that Eq. (A7) characterizes 

noise. A zero mean stationary random time function is Gaussian 

ifj and only if, all its odd moments are zero, and its even 

moments satisfy Eq. (A7) « 
By random noise is generally meant noise with a power spectrum 

that is constant up to quite large frequencies. The covariance 

function of random noise is thus, more or less, a a  function. 

" "''"••' *?*" '*•,'•'-;•'^—~-% ;^y-.^:v;,,^. T. ""*! -- 
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IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER 
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, 
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. 
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